Dynamical Complexity Of Short and Noisy Time Series
نویسندگان
چکیده
Shannon Entropy has been extensively used for characterizing complexity of time series arising from chaotic dynamical systems and stochastic processes such as Markov chains. However, for short and noisy time series, Shannon entropy performs poorly. Complexity measures which are based on lossless compression algorithms are a good substitute in such scenarios. We evaluate the performance of two such Compression-Complexity Measures namely Lempel-Ziv complexity (LZ) and Effort-To-Compress (ETC) on short time series from chaotic dynamical systems in the presence of noise. Both LZ and ETC outperform Shannon entropy (H) in accurately characterizing the dynamical complexity of such systems. For very short binary sequences (which arise in neuroscience applications), ETC has higher number of distinct complexity values than LZ andH , thus enabling a finer resolution. For two-state ergodic Markov chains, we empirically show that ETC converges to a steady state value faster than LZ. Compression-Complexity Measures are promising for applications which involve short and noisy time series.
منابع مشابه
A Novel Method for Detection of Epilepsy in Short and Noisy EEG Signals Using Ordinal Pattern Analysis
Introduction: In this paper, a novel complexity measure is proposed to detect dynamical changes in nonlinear systems using ordinal pattern analysis of time series data taken from the system. Epilepsy is considered as a dynamical change in nonlinear and complex brain system. The ability of the proposed measure for characterizing the normal and epileptic EEG signals when the signal is short or is...
متن کاملInvestigating Chaos in Tehran Stock Exchange Index
Modeling and analysis of future prices has been hot topic for economic analysts in recent years. Traditionally, the complex movements in the prices are usually taken as random or stochastic process. However, they may be produced by a deterministic nonlinear process. Accuracy and efficiency of economic models in the short period forecasting is strategic and crucial for business world. Nonlinear ...
متن کاملAHEART June 47/6
Richman, Joshua S., and J. Randall Moorman. Physiological time-series analysis using approximate and sample entropy. Am J Physiol Heart Circ Physiol 278: H2039–H2049, 2000.—Entropy, as it relates to dynamical systems, is the rate of information production. Methods for estimation of the entropy of a system represented by a time series are not, however, well suited to analysis of the short and no...
متن کاملCardiovascular Dynamics – Multiple Time Scales, Oscillations and Noise
Modelling the cardiovascular system (CVS) presents a challenging and important problem. The CVS is a complex dynamical system that is vital to the function of the human organism, and it reflects numerous different states of health and disease. Its complexity lies in a combination of oscillatory modes spanning a wide frequency scale that can synchronize for short episodes of time, coupled with a...
متن کاملMarkov chain Monte Carlo method in Bayesian reconstruction of dynamical systems from noisy chaotic time series.
The impossibility to use the MCMC (Markov chain Monte Carlo) methods for long noisy chaotic time series (TS) (due to high computational complexity) is a serious limitation for reconstruction of dynamical systems (DSs). In particular, it does not allow one to use the universal Bayesian approach for reconstruction of a DS in the most interesting case of the unknown evolution operator of the syste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1609.01924 شماره
صفحات -
تاریخ انتشار 2016